How are batholiths and laccolites similarly defined?

General differential calculus and differentiable manifolds, which are defined with different derivation terms

bibliography

  1. [1]

    V. I. Averbuh and O. G. Smoljanov, additions to the Russian translation of [5], Izdat. “Mir”, Moscow, (1970).

    Google Scholar

  2. [2]

    -, differentiation and pseudotopologies,Vestnik Moskov. Univ. Ser. I. Mat. Meh.27 (1972), no. 1, 3–7 (Russian; English summary).MR45 # 9130

    Google Scholar

  3. [3]

    F. Berquier, Calcul différentiel dans les espaces quasi-bornologiques,Esquisses mathématiques, No. 20, Fac. Sci. Univ. Paris VII, Paris, 1973, iv +81 pp.MR51 # 11568

  4. [4]

    H. R. Fischer, Limes areas,Math. Ann.137 (1959), 269–303.MR22 # 225

    Article Google Scholar

  5. [5]

    A. Frölicher andW. Books,Calculus in vector spaces without norm, Lecture Notes in Mathematics, No. 30, Springer-Verlag, Berlin-New York, 1966, x + 146 pp.MR35 # 4723

    Google Scholar

  6. [6]

    W. Gähler, set convergence and generalized uniform convergence - a contribution to the theory of differentiability,Math. Msg.61 (1974), 211–258.MR50 # 14216

    Google Scholar

  7. [7]

    —:Basic structures of analysis, Akademie-Verlag, Berlin, Vol. 1, 1977; Vol. 2 in preparation.

    Google Scholar

  8. [8]

    H. H. Keller, Spaces of continuous multilinear mappings as Limes spaces,Math. Ann.159 (1965), 259–270.MR33 # 1695

    Article Google Scholar

  9. [9]

    H.-J. Kowalsky, Limes areas and completion,Math. Msg.12 (1954), 301–340.MR17-390

    Google Scholar

  10. [10]

    M. Simonnet, Calcul différentiel dans les espaces non-normables,Cahier's topology Géom. Differential13 (1972) 411-437; ibid.Cahier's topology Géom. Differential14 (1973), 3–40.MR49 # 11249

    Google Scholar

Download references

Author information

Affiliations

  1. Central Institute for Mathematics and Mechanics, Academy of Sciences of the GDR, Mohrenstrasse 39, DDR-108, Berlin, German Democratic Republic

    W. Gähler

additional information

This article is the text of a talk given at the Symposium on Differential Geometry in Debrecen, Hungary, on August 28 – September 3, 1975.

About this article

Cite this article

Gähler, W. General differential calculus and differentiable manifolds, which are defined with different derivation terms. Period Math Hung8, 171-180 (1977). https://doi.org/10.1007/BF02018502

Download citation

AMS (MOS) subject classifications (1970)

  • Primary 58A05
  • 58C20
  • Secondary 54A05

Key words and phrases

  • Limit spaces
  • limit vector spaces
  • general differentiation theory
  • differentiable manifolds